
Energie analyse
Bernard van Gastel

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Blind spot for software energy consumption
• How much energy does it cost?

– a Google search

– your personal cloud

– big data calculations

– website

– BitCoin mining

– ….

• Did you learn how to write energy efficient programs?
• Did you teach how to write energy efficient programs?

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Energy is of primary importance in IT
• Mobile phone models that last longer get better reviews
• Data centres are located where energy is cheap
• ARM market share grew with rising energy prices
• Due to laws and regulations, long-term plan, etc
• Due to hardware limits (to avoid meltdowns, …)

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Energy consumption of IT is increasing
• 10% of world-wide energy production……… in 2012!

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Software controls hardware
• Processor accounts for around 5% on modern phones
• Take into account all the components:

– WiFi, Screen, Audio

– 3G connection

– Industrial Motors, Car engines, Auto pilot of airplanes

– Heating using smart thermostats

– Robot vacuum cleaner

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Relevance
• Computers control the world and hence software controls a large

fraction of the energy used in the world!
• Energy is a resource: energy consumption analysis is a form of

resource consumption analysis
• Analysis of complete systems is needed:  

	 software+hardware = control+machine

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

All kinds of hardware can be controlled
• Many approaches target specific (class of) hardware
• Infeasible to develop analysis for each (class of) component(s)
• We need a generic approach

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Evaluating energy consumption is time consuming…
• Developing software is an iterative process
• Developing energy efficient software is an iterative process
• Evaluating software for n devices, requires n test setups

– e.g. there are over 10000 Android models supported by Google Play

• It is important to get feedback quickly….

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Our proposed approach
• Start with defining an explicit interface in software
• Define parametric hardware models which are controlled by the

interface in the software
• Define exact semantics for input language
• Define type system deriving a the exact energy consumption

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Our previous approach
• Used a Hoare Calculus
• Used an over approximation
• Limited applicability of the approach:

– Problems with reusing derived bounds (e.g. function call)

– Recursion is not supported

• Needed a pre-analysis
• A new system taking these improvements into account was more

natural as a type system, and could derive exact energy
consumption (but probably can retain the flexibility to over
approximate)

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Start with defining an explicit interface in software
• Define a simple language (to start with)
• Explicit control of hardware components

all the used hardware components, which model the energy consumption charac-
teristics of these components, as well as the return values of component function
calls, with respect to their parameters.

The ECA language is described in Section 2.1. Modelling of hardware compo-
nents is discussed in Section 2.2. Energy-aware semantics for ECA are discussed
in Section 2.3.

2.1 ECA Language

The grammar for the ECA language is defined as follows

hConsti ::= ‘0’ | ‘1’ | . . . | ‘9’ | hConstihConsti | ‘-’ hConsti

hIdi ::= ‘A’ | ‘a’ | ‘B’ | ‘b’ | . . . | ‘Z’ | ‘z’ | hIdihIdi

hInputi ::= ’#’ hIdi

hVar,FuncName,Componenti ::= hIdi

hFuncDefi ::= ‘function’ hFuncNamei ‘(’ hVari ‘)’ ‘begin’ hExpri ‘end’

hBin-Opi ::= ‘+’ | ‘-’ | ‘*’ | ‘>’ | ‘>=’ | ‘==’ | ‘!= ’| ‘<=’ | ‘<’ | ‘and’ | ‘or’

hExpri ::= hConsti | hInputi | hVari
| hVari ‘:=’ hExpri | hExpri hBin-Opi hExpri
| hComponenti ‘::’ hFuncNamei ‘(’ hExpri ‘)’
| hFuncNamei ‘(’ hExpri ‘)’
| hStatementi ‘,’ hExpri

hStatementi ::= ‘skip’ | hStatementi ‘;’ hStatementi | hExpri
| ‘if’ hExpri ‘then’ hStatementi ‘else’ hStatementi ‘end’
| ‘repeat’ hExpri ‘begin’ hStatementi ‘end’
| hFuncDefi hStatementi

The only supported type in the ECA language is integer. There are no ex-
plicit booleans. The value 0 is handled as False, any other value is handled as
True. The abscence of global variables and the by-value passing of variables to
functions implies that functions do not have side-e↵ects on the program state.
Functions are statically scoped. Recursion is not currently supported.

Our language has an explicit construction for operations on hardware compo-
nents (e.g. memory, storage or network devices). This allows us to reason about
components in a straight-forward manner. Functions on components have a sin-
gle parameter and always return a value. The notation C

i

::f refers to a function
f of a component C

i

.
The ECA language has slightly changed with respect to [35]. There is now

an explicit di↵erence between input variables and regular program variables. We
now use signed integers. Furthermore, the bounded while loop has been replaced
by a simple repeat. This makes the bound an obvious part of the loop and removes
the need for an additional loop guard. The loop bound is evaluated once, so the
number of iterations is known pre-execution of the loop.

4

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Hardware models
• Each component is modelled by a Finite State Machine
• Models with the same interface can be exchanged
• Each component has functions that operate on the component
• Each component function can modify the state
• Each state has an associated power draw and incidental energy

usage
• Can be created using specs of manufacturer and/or measured

dynamically

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Define type system
• Deriving a higher order function that computes the energy

consumption
• Depends on input variables, so we use a dependent type system

to express all variables in terms of the input
• Because of the nature of a type system, function signatures can

be reused.

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Example
• Switches a radio device on
• Transmit n pieces of information
• Switches the radio off

• Energy model:
– while switched on the radio has a power draw of u

– each transmit call cost i energy, and will take time t

• Intuitive energy bound of:

The component state is determined in a similar way iteratively applying the
component state e↵ect of the body the required number of times. The definition
of repeatedly applying the state e↵ects is given through the function A

n below.

A

n : (TypeEnv ⇥ CState ! CState) ⇥(TypeEnv ! Bound)
! (TypeEnv ⇥ CState ! CState)

A

0(typeenv, cstate) = cstate

A

n(typeenv, cstate) = A

n�1(env,A(typeenv, cstate))

Together with the basic dependent type system of Section 3 this energy
aware dependent type system derives for each function its e↵ects on both energy
consumption and component states as symbolic energy signatures.

5 Example

In this section, we demonstrate our analysis on an example program. Each con-
struct in ECA has an associated Worst-Case Execution Time (WCET). These
WCETs are used in calculating the energy consumption that is time-dependent.
Another source of energy consumption in our modelling is incidental usage, which
can also be associated with any ECA construct. Adding these two sources to-
gether yields the Worst-Case Energy Consumption (WCEC).

1 C::on();

2 repeat #n begin

3 C::transmit(#n)

4 end;

5 C::off()

Listing 1.1: Example program.

Consider the example in Listing 1.1. The e↵ect of the first statement is start-
ing a component C, e.g. a wireless transmitter (actually, functions have a single
parameter; this parameter is omitted here as it is not used). After enabling com-
ponent C, values can be transmitted by calling the function C::transmit(). The
last line switches the device o↵. The wireless transmitter has two states, o↵ < on.

For this example, we will assume a start state in which the component is
in the o↵ state and an input n 2 N. Furthermore, the incidental energy cost
of transmit function is i and a call to this function has WCET t. The other
component function calls and the loop construct are assumed to have 0 execution
time and incidental energy consumption. While switched on, the component has
a power draw of u.

We will start with an intuitive explanation of the energy consumption of this
program, then continue by applying the analysis presented in this paper and
comparing the results. Quickly calculating the WCET of the program, yields a
bound of n ⇥ t. As the component is switched on at the start and switched o↵
at the end of the program, the time-dependent energy consumption is n⇥ t⇥ u.

12

n⇥ (t⇥ u+ i)

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Example (2)
• The analysis rules derive two bounds: 

a energy type and a state change type
• Both are higher order functions, having a concrete state as input.
• These results can be combined with
• The energy bound of C::transmit(#n) is: 
 
 
(the energy costs E of evaluating the argument plus the cost of
the time dependent energy consumption)

• The resulting state change function is the function composition of
the state change function of evaluating the argument and the
delta function of C::transmit

The component state is determined in a similar way iteratively applying the
component state e↵ect of the body the required number of times. The definition
of repeatedly applying the state e↵ects is given through the function A

n below.

A

n : (TypeEnv ⇥ CState ! CState) ⇥(TypeEnv ! Bound)
! (TypeEnv ⇥ CState ! CState)

A

0(typeenv, cstate) = cstate

A

n(typeenv, cstate) = A

n�1(env,A(typeenv, cstate))

Together with the basic dependent type system of Section 3 this energy
aware dependent type system derives for each function its e↵ects on both energy
consumption and component states as symbolic energy signatures.

5 Example

In this section, we demonstrate our analysis on an example program. Each con-
struct in ECA has an associated Worst-Case Execution Time (WCET). These
WCETs are used in calculating the energy consumption that is time-dependent.
Another source of energy consumption in our modelling is incidental usage, which
can also be associated with any ECA construct. Adding these two sources to-
gether yields the Worst-Case Energy Consumption (WCEC).

1 C::on();

2 repeat #n begin

3 C::transmit(#n)

4 end;

5 C::off()

Listing 1.1: Example program.

Consider the example in Listing 1.1. The e↵ect of the first statement is start-
ing a component C, e.g. a wireless transmitter (actually, functions have a single
parameter; this parameter is omitted here as it is not used). After enabling com-
ponent C, values can be transmitted by calling the function C::transmit(). The
last line switches the device o↵. The wireless transmitter has two states, o↵ < on.

For this example, we will assume a start state in which the component is
in the o↵ state and an input n 2 N. Furthermore, the incidental energy cost
of transmit function is i and a call to this function has WCET t. The other
component function calls and the loop construct are assumed to have 0 execution
time and incidental energy consumption. While switched on, the component has
a power draw of u.

We will start with an intuitive explanation of the energy consumption of this
program, then continue by applying the analysis presented in this paper and
comparing the results. Quickly calculating the WCET of the program, yields a
bound of n ⇥ t. As the component is switched on at the start and switched o↵
at the end of the program, the time-dependent energy consumption is n⇥ t⇥ u.

12

�,⌦, >>>

E#n � (⌃#n >>> (tdt � ii)) = tdt � ii

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Example (3)
• The general approach to analysing a loop is:

• In this case:

• Eliminating the recursive definition of ‘repeat’:

• We can eliminate the higher order functions:

• Because we know the component is on, we can eliminate e:

The component state is determined in a similar way iteratively applying the
component state e↵ect of the body the required number of times. The definition
of repeatedly applying the state e↵ects is given through the function A

n below.

A

n : (TypeEnv ⇥ CState ! CState) ⇥(TypeEnv ! Bound)
! (TypeEnv ⇥ CState ! CState)

A

0(typeenv, cstate) = cstate

A

n(typeenv, cstate) = A

n�1(env,A(typeenv, cstate))

Together with the basic dependent type system of Section 3 this energy
aware dependent type system derives for each function its e↵ects on both energy
consumption and component states as symbolic energy signatures.

5 Example

In this section, we demonstrate our analysis on an example program. Each con-
struct in ECA has an associated Worst-Case Execution Time (WCET). These
WCETs are used in calculating the energy consumption that is time-dependent.
Another source of energy consumption in our modelling is incidental usage, which
can also be associated with any ECA construct. Adding these two sources to-
gether yields the Worst-Case Energy Consumption (WCEC).

1 C::on();

2 repeat #n begin

3 C::transmit(#n)

4 end;

5 C::off()

Listing 1.1: Example program.

Consider the example in Listing 1.1. The e↵ect of the first statement is start-
ing a component C, e.g. a wireless transmitter (actually, functions have a single
parameter; this parameter is omitted here as it is not used). After enabling com-
ponent C, values can be transmitted by calling the function C::transmit(). The
last line switches the device o↵. The wireless transmitter has two states, o↵ < on.

For this example, we will assume a start state in which the component is
in the o↵ state and an input n 2 N. Furthermore, the incidental energy cost
of transmit function is i and a call to this function has WCET t. The other
component function calls and the loop construct are assumed to have 0 execution
time and incidental energy consumption. While switched on, the component has
a power draw of u.

We will start with an intuitive explanation of the energy consumption of this
program, then continue by applying the analysis presented in this paper and
comparing the results. Quickly calculating the WCET of the program, yields a
bound of n ⇥ t. As the component is switched on at the start and switched o↵
at the end of the program, the time-dependent energy consumption is n⇥ t⇥ u.

12

repeat(T
bound

, E
loop

,⌃
loop

)

repeat(n, tdt � ii, id)

n⇥ (e⇥ t⇥ u+ i)

n⌦ (tdt � ii)

n⇥ (t⇥ u+ i)

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Flexibility
• In principle the type system is exact (assuming exact hardware

models). The repeat and if functions are precise, there is no over
approximation. The type system returns a function operating on
an environment returning a bound.

• These repeat and if functions can be given another meaning,
together with the basic blocks of the type system, so the type
system returns an over approximating function (which yields
results quicker) (future work)

• Instead of executing the resulting function on a concrete
environment, one can also interpret the result symbolically. This
will result in a symbolic bound. Over approximation is a
requirement for this. (future work)

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Future work
• Add recursion

– Using a cost-relation (instance of recurrence relation) to solve recursion
(and improve the loop)

• Evaluate applicability on large systems
• Ability to analyse `structured parallel programs’ (also using

dependent types)
• Apply on a real programming language (e.g. by using LLVM IR as

analysis input)
• Implement the type system in our prototype

A Dependent Type System for Energy Consumption Analysis - Bernard van Gastel, Rody Kersten and Marko van Eekelen

Conclusion
• Presented a type system deriving an energy consumption

function with parametric hardware models
• Scalable, by permitting reuse of analysis results.
• Flexible, potentially deriving more bounds
• More elegant and concise presentation
• Now self-contained

